
redfoxengineering

DFI (DiscFerret Image)
File Format Manual

and Reference Guide

Revision 0.0 (2012-03-31)

License and Copyright Information

This document is copyrighted.

Copyright © 2012 Philip Pemberton, t/a. Red Fox Engineering. All Rights Reserved.

This document is licensed under a Creative Commons Attribution-NoDerivs 3.0
Unported License. This means that you are free to:

• Share – to copy, distribute and transmit this document, or to make commercial
use of it.

Under the following conditions:

• Attribution – You must attribute any extracts, portions or reprints from or of
the document to the original authors, but not in any way which suggests that
they endorse you or your use of the document.

• No derivative works – You may not alter, transform or build upon this work.

Our rationale for this is that:

1. We would like to keep the DiscFerret magnetic disc image format as an open,
publicly-documented standard.

2. We wish to encourage users of the format to suggest improvements (via the
DiscFerret IRC channel, mailing list and private email), rather than create their
own incompatible variations of the format.

The file format itself is provided for use for any purpose, in any product or software
application, irrespective of whether the end product is distributed under an open-
source, public-domain, freeware, shareware or commercial license. No royalties are
charged for its use, nor are any license fees (up-front or after-the-fact) required in any
way shape or form.

In the event that any intellectual property owned by Red Fox Engineering is required
to implement this specification, that intellectual property will be licensed under Fair,
Reasonable and Non-Discriminatory terms, free of charge to the implementer,
provided that the implementation meets the requirements set out in this specification.

In the event that a third party submits a Proposed Amendment to the DiscFerret
format, they shall also license any required patents, copyrights or other intellectual
property required for its implementation under Fair, Reasonable and Non-
Discriminatory terms, free of charge to any user of this file format.

Users should refer to the file format as “the DiscFerret Image File Format”, or
alternatively “the DiscFerret DFI File Format”. In file-type drop-down selection widgets,
the form “DiscFerret Image File (*.dfi)” is acceptable.

The intended file extension for DiscFerret Image Files is dfi (e.g. myFile.dfi).

iii

Table of Contents

License and Copyright Information..iii
Table of Contents...v
1. Terminology used in this document..1-1
2. Introduction...2-1
3. Primitive data types...3-1
4. Overall view of a typical DFI file..4-1
5. File header..5-1
6. Data chunks..6-1

6.1. EIGHTCC code descriptor...6-1
6.2. Chunk header format...6-1

7. Defined chunk identifiers and payload formats..7-1

v

Terminology used in this document

1. Terminology used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119. This document is available to download from
http://www.ietf.org/rfc/rfc2119.txt or any site which mirrors the IETF RFC archive.

Other terminology used in this document is listed below.

Captured image
A disc image which was created by reading an existing magnetic disc.

Mastered image
A disc image which was created from an existing binary data stream, using a format
description.

Remastered image
A disc image which was created by reading an existing magnetic disc, decoding the
data, then re-encoding the data using knowledge of the on-disc format.

1-1

http://www.ietf.org/rfc/rfc2119.txt

Introduction

2. Introduction
This document is intended to provide software developers with the information
required to create, interpret and decode DiscFerret Image (DFI) files in a manner
which allows for seamless interoperability with other tools capable of reading and
writing DFI image files.

The DFI image file format allows for high-efficiency storage of magnetic track images.
These may have been acquired from an existing disc using a DiscFerret or similar
magnetic disc analyser (Captured images), or they may have been created with the
intention of being written back to disc (Mastered or Remastered images).

The DFI file format is based on the Electronic Arts EA IFF 1985 standard, but with
several critical modifications. Most notable of these is the replacement of the FORM
chunk with a dedicated header derived from the Portable Network Graphics file format.
Other extensions include:

• The four-byte identifier (also known as a FOURCC) has been extended to eight
bytes to allow for future expansion. Any ASCII alphanumeric character may be
used in an identifier (other ASCII character codes may also be used, but this is
discouraged).

• The chunk length field has been extended from 32 to to 64 total bits. This
means the maximum block size is around sixteen exbibytes (16 EiB), or 264

total bytes.

• The total file size is limited only by the storage capability of the chunk length
flag.

• Storage of meta-data inside the disc image. This includes scanned copies of
disc labels (as either PNG or JPEG image data), textual descriptions of disc
content and optionally data to identify the tools used to image the disc.

It is hoped that the DFI image format can be extended to suit the requirements of
many disc archiving use cases. If for some reason you require a feature to be added to
the DFI Standard, please feel free to contact us.

2-1

Primitive data types

3. Primitive data types
The various abstract data types, chunks and headers which form a DiscFerret Image
file are themselves composed of a number of primitive data types. These data types
are listed in the table below.

Data type Definition

BYTE 8-bit byte, unsigned

SBYTE 8-bit byte, signed

WORD 16-bit word, unsigned

SWORD 16-bit word, signed

DWORD 32-bit double word, unsigned

SDWORD 32-bit double word, signed

QWORD 64-bit quad word, unsigned

SQWORD 64-bit quad word, signed

All of the multi-byte data formats listed are stored in big endian (also known as
Motorola) byte order. This means that the most significant byte is stored first, e.g. the
DWORD 0x12345678 would be serialised as the four-byte sequence: 0x12, 0x34, 0x56,
0x78.

All signed types are stored in two's complement form. For example, a signed two-byte
word (SWORD) would be stored as:

• Value -65536– 0x80 0x00 (negative 65536)

• Value -1 – 0xFF 0xFF (negative one)

• Value 0 – 0x00 0x00 (zero)

• Value 1 – 0x00 0x01 (positive one)

• Value 65535 – 0x7F 0xFF (positive 65535)

Array types are denoted with an asterisk suffix. For example, BYTE*4 would be a
sequence of four unsigned bytes.

3-1

Overall view of a typical DFI file

4. Overall view of a typical DFI f i le
• File header (see section 5)

• METADATA chunk, containing (all optional):

◦ File title

◦ File description

◦ Item number

◦ Imaging hardware description (hardware type and optional serial number)

◦ Format script

◦ Drive script

◦ Images of e.g. disc label and packaging

• One or more TrACK chunks, each containing:

◦ One TrAKINFO chunk, containing metadata specific to this track

▪ Contains details about how this track was imaged, e.g. sample rate,
synchronisation method and number of disc reads.

▪ Contains details about this track's physical location (cylinder, head and
optionally sector).

▪ Also contains details of this track's provenance, i.e. whether it originated
from a disc read or a mastering operation.

◦ One coMPRESS chunk (compression ID), optional

▪ Identifies the compression format used to store the track data.

▪ If omitted, track timing data is assumed to be uncompressed.

▪ Valid IDs are four characters long, defined formats are:

• NONE – no compression

• GZIP – gzip Deflate compression

• BZ2 – Bzip2 compression

• LZMA – LZMA compression

• LZO – LZO compression

▪ Target applications are not required to support all these formats, but
must support (as a minimum), NONE, GZIP and BZ2.

◦ One trACKDAT chunk, containing track data

▪ Track timing data, in the form of a sequence of 32-bit unsigned timing
deltas.

◦ One inDEXPOS chunk, containing positions of index pulses (optional)

▪ Stores the timing positions of the index pulses present in the input
stream

4-1

File header

5. Fi le header
The file header is placed at the beginning of the file (offset zero), and serves to
identify that the file being read is a DiscFerret Image file. It also contains several
blocks which allow common file transmission errors to be detected.

This section has been derived from the Portable Network Graphics (PNG) file format
header, but has been modified in order to prevent DFI files from being mistaken for
PNG files.

Offset Length Data Type Value / Function

0 1 BYTE 0x89
A byte with the high bit set. Used to detect transmission
over 7-bit data paths.

1 3 BYTE*3 “DFI”
DiscFerret Image

4 2 BYTE*2 0x0D 0x0A
A DOS-style line ending. Used to detect DOS-to-UNIX
line ending conversion.

6 1 BYTE 0x1A
ASCII EOF. Stops the remainder of the file from being
displayed by the TYPE command in DOS or Windows
command prompts.

7 1 BYTE 0x0A
A UNIX-style line ending. Used to detect UNIX-to-DOS
line ending conversion.

Note that the header is exactly eight bytes in length. In the event that a DFI file is
transferred over a 7-bit data path (e.g. a modem or USENET) without suitable
encapsulation, the first byte's most significant bit will be cleared (changing the byte to
0x09).

The next three characters are an ASCII string: “DFI”. These signify that the file is a
DiscFerret Image.

A two-byte DOS-style (CR LF) line ending follows this. In the event that a DFI image file
is incorrectly processed with a DOS-to-UNIX line ending conversion tool (e.g. dos2unix
or hd2u), these two bytes will be converted to a single 0x0A (LF) byte.

A single EOF byte follows these. This will cause the MS-DOS and Windows TYPE
command to cease outputting data. This is intended, and allows the TYPE command to
be used (in a rudimentary fashion) to identify that the file is a DFI image. On UNIX
systems, the file command should be used instead.

Finally, the header is terminated with a single 0x0A byte (ASCII LF). In the event that
the file is processed by a UNIX-to-DOS line ending conversion tool (e.g. unix2dos), this
byte will be converted into a two-byte DOS line ending (CR LF).

Applications are permitted to detect any of the above corruption, however this should
only be used for the purposes of informing the user that an error has occurred. An
application MUST NOT attempt to correct any of the above types of corruption, as this
is impossible to do in a repeatable and provably-correct manner.

5-1

Data chunks

6. Data chunks
Each block of data stored in a DFI file is encapsulated within a Data Chunk. Each data
chunk consists of a header and a payload, which in some cases may be one or more
other chunks.

The header contains an EIGHTCC (Eight Character Code) which uniquely identifies the
data contained within the chunk, whether it contains further child chunks, and whether
the chunk may safely be copied into another file verbatim if the writing application
does not recognise it.

6.1. EIGHTCC code descriptor
An EIGHTCC code is an eight-character ASCII string, which must be composed solely of
printable characters (ideally upper and lower case letters and numbers).

The initial two characters of an EIGHTCC code must be alphabetic (their case encodes
the safe to copy and contains children state flags), however other characters may be
alphabetic, numeric or contain shifted symbols (e.g. %, #, ! or space).

The minimal length of an EIGHTCC is two characters, while the maximal length is eight
characters. Unused bytes shall be padded with spaces. For example, “TRACK” shall be
padded to create the EIGHTCC identifier “TRACK “.

The first character of an EIGHTCC code encodes the state of the contains children flag.
If this character is upper-case, then the chunk contains children. If this character is
lower-case, then the chunk does not contain children.

The second character of an EIGHTCC code encode the state of the safe to copy flag. If
this character is upper-case, then the safe to copy flag is set. If the application does
not recognise a chunk identifier (EIGHTCC), and the safe to copy flag is set, then the
chunk should be copied verbatim into the output file. Otherwise, the chunk should be
removed from the output file.

6.2. Chunk header format
This section has been derived from the Portable Network Graphics (PNG) file format
header, but has been modified in order to prevent DFI files from being mistaken for
PNG files.

Offset Length Data Type Value / Function

0 8 BYTE*8 EIGHTCC identifier code
Eight-character chunk identifier, as specified in the
above section, “EIGHTCC code descriptorabove“.

7 8 QWORD Length
Length of the chunk payload, in bytes.

15 n BYTE*n Data payload
This chunk's data payload.

6-1

Defined chunk identifiers and payload formats

7. Defined chunk identif iers and payload formats
TODO

7-1

	1. Terminology used in this document
	2. Introduction
	3. Primitive data types
	4. Overall view of a typical DFI file
	5. File header
	6. Data chunks
	6.1. EIGHTCC code descriptor
	6.2. Chunk header format

	7. Defined chunk identifiers and payload formats

